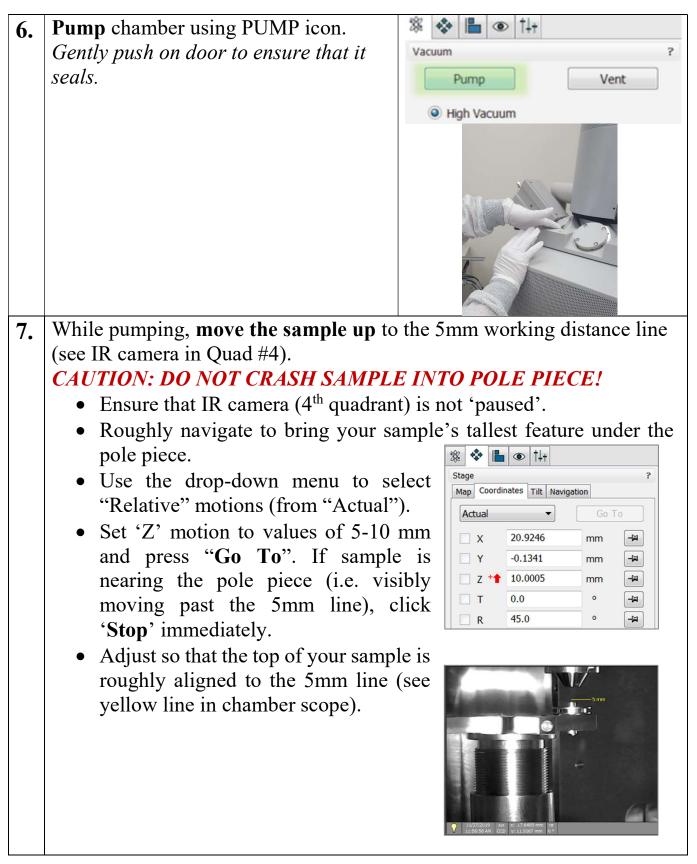

FEI (Thermo Fisher) Nova NanoSEM 450

These instructions are intended for reference only, and will *not* replace the thorough training required for proper system operation. Contact a clean room staff member with questions or to report a system problem.

Written by Dr. Philippe Chow

🖆 Columbia | Nano Initiative



IN THE CITY OF NEW YORK COLUMBIA NANO INITIATIVE / CENTER FOR INTEGRATED SCIENCE AND ENGINEERING

Load sample: **4**. • Carefully slide the door/slide faradav assembly out. cup • Place holder stub onto the stage in one of the holes. The Faraday cup may need to be removed for larger holders and can be placed in its box. • Secure holder with set screw. • Do not manually move the stage! Use stage control if rotation is ● †↓+ B needed. 2 Stage Map Coordinates Tilt Navigation Go To Actual 20.9246 -[2] X mm -0.1341 Y mm 10.0005 Z + mm -[iii] 0.0 0 -Т 45.0 0 R -Carefully close chamber door while observing IR camera in the lower 5. right quadrant of the user interface to ensure sample does not hit pole piece.

8.	Take a NavCam photo of the stage (Ctrimage of the stage will allow for easy sating the lower left quadrant. Image of the stage will allow for easy sating the lower left quadrant. Image of the stage will allow for easy sating the lower left quadrant. Image of the stage will allow for easy sating the lower left quadrant. Image of the stage will allow for easy sating the lower left quadrant. Image of the stage will allow for easy sating the lower left quadrant. Image of the stage will allow for easy sating the lower left quadrant. Image of the stage will allow for easy sating the lower left quadrant. Image of the stage will allow for easy sating the lower left quadrant. Image of the stage will allow for easy sating the lower left quadrant. Image of the stage will allow for easy sating the lower left quadrant. Image of the stage will allow for easy sating the lower left quadrant. Image of the stage will allow for easy sating the lower left quadrant. Image of the stage will allow for easy sating the lower left quadrant. Image of the stage will allow for easy sating the lower left quadrant. Image of the stage will allow for easy sating the lower left quadrant. Image of the stage will allow for easy sating the lower left quadrant. Image of the stage will allow for easy sating the lower left quadrant. Image of the stage will allow for easy sating the lower left quadrant.	mple navigation and is located
9.	Check that the <u>beam blanker</u> is switched to the "Microscopy" setting for imaging. The <u>final aperture</u> is set by the manufacturer. Do not adjust this knob. Control of final aperture occurs via software. Wait for the chamber to pump down to a base pressure of at least 4e-5 Torr (on the vacuum tab).	beam blanker final aperture final aperture initial aperture status ? Status ? Chamber Pressure: 2.51e-6 Torr Emission Current: 119 μA Specimen Current: -322.1 pA Image: Comparison of the system of t

🖆 Columbia | Nano Initiative

IN THE CITY OF NEW YORK COLUMBIA NANO INITIATIVE / CENTER FOR INTEGRATED SCIENCE AND ENGINEERING

II: Optimizing imaging conditions:

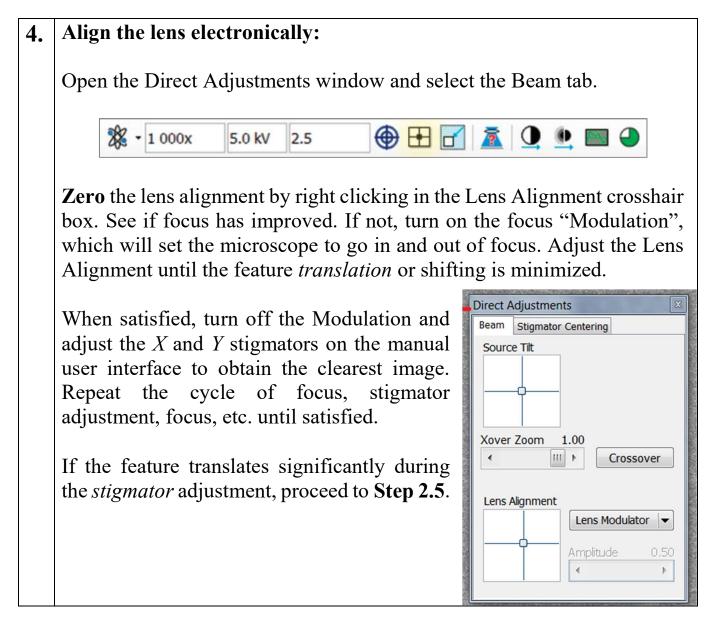
It is important for users to have an understanding of the principles of microscopy as is relevant to their particular requirements (sample type, image resolution and beam/sample interaction constraints, etc.). The settings presented here serve as a starting point for users to find the optimal conditions for their work. We present some guidelines for image optimization in the appendix of this standard operating procedure.

Set the "Spot" = 5.0, which corresponds to a final aperture diameter of 1. 30 µm. Set the acceleration voltage to 5.00 kV as a starting point.

Turn on the beam ('Beam On' turns yellow) and "un-pause" the 1st quadrant screen.

	Spot		
Beam On	+ ▼	5.0	-+
High Voltage			

The microscope will be in its default 'Field-free' imaging mode, which uses the Everhartt-Thornley Detector (ETD) in secondary electron imaging mode. This is standard for lower-resolution imaging. If higher resolution is needed, Immersion Mode is recommended (see Step 2.8).


Check for visible features by adjusting magnification and focus. Adjust the contrast and brightness (manually or by using the 'Auto Contrast/Brightness' feature, located on the upper toolbar).

Use the Stage control menu on the right-hand side to change the stage position, tilt and rotation. Sample navigation can also be performed by double-clicking on a position on the Nav-Cam photo (lower left Quad) or the scanning quad (upper left Quad).

2.	Focus on your area of interest:			
	Locate a distinct feature at ~1000x magnification and obtain a rough focus using the coarse/fine adjustment knobs. If image is translating/shifting while focusing, proceed to Step 2.4 for lens alignment.			
	Use the Reduced area window*, which allows for rapid scanning.			
	🎉 • 1 000x 5.0 kV 2.5 💮 🕀 🗗 🗖 🙇 🔍 🐏 📟 🥥			
3.	Adjust for astigmatism:			
	Adjust for the astigmatism aberration, which appears as a directional shape distortion while focusing (as opposed to a translation), by adjusting the X and Y stigmator knobs on the manual user interface.			
	<u>Tip</u> : Adjust the X stigmator until image comes into better focus, then adjust the Y stigmator until image is further improved. Then adjust the focus knob to further improve. Repeat the stigmator adjustment until further improvements are not visible.			
	If, while adjusting stigmator knobs, the image translates or shifts, then stigmator alignment is required. Proceed to Step 2.5 .			

5.	Align the stigmators electronically:	Direct Adjustments		
	Zero the stigmator centers by right clicking in the Stigmator Center X and Y crosshair boxes. Check if shifting during stigmator adjustment has improved.	Beam Stigmator Centering Stigmator Cente X Modulator X Amplitude 0.05 (IIII)		
	If not, click on the Stigmator tab and turn on the Modulator X. Adjust the modulation amplitude if the motion is jumpy. Adjust the Stigmator Center X until the feature translation disappears. Repeat for Stigmator Y.	Stigmator Center Y Modulator Y Amplitude 0.13		
6.	Link stage (not for e-beam lithography):			
	Once the stage is focused at a working distance of 5 mm, the stage can be linked so that the microscope can always know the distance from the sample to the pole piece. This sets an accurate WD and minimizes the change of damaging the pole piece.			
	Click the icon on the upper toolbar when focused at roughly 10,000x magnification, and it will change to indicating that the stage is now linked. Sometimes, such as when switching imaging			
	modes, or changing working distance, the stag			
	this case, focus and perform the prior procedur	e again.		

COLUMBIA NANO INITIATIVE / CENTER FOR INTEGRATED SCIENCE AND ENGINEERING

Capture and save an image:

7.

8.

9.

Click on the Photo so or the snapshot icon on the upper toolbar to scan a full frame and save the image. The scan duration can be modified as desired. Adjust the Dwell Time, Resolution and Scan mode (i.e. frame vs. line integration) as desired for your particular sample. Save files in the USER IMAGES folder shortcut. This folder is stored on the Desktop of the **Support PC** (not the Microscope PC) via local network connection. *Do not store images on the Microscope PC or they will be deleted. Immersion Mode is recommended for imaging small features (> 50,000x). Select this mode from the dropdown menu on the upper toolbar. Once II · | ~ selected, the immersion lens is switched on Mode 1: Field-Free and the detector switched to the through-lens Mode 2: Immersion Mode 3: EDX detector (TLD) in secondary electron imaging mode. **NO MAGNETIC MATERIALS** are allowed when using this mode. Align the lens and stigmators again. This is a dual lens mode so getting ultra-high resolution requires another alignment. Perform the same focus/astigmatism procedure in this mode as in the field-free mode. Turn OFF the beam (reverse of Step 2.1). Column ? Spot 5.0 - + ++ -Beam On High Voltage ++ -5.00 kV +

10.	Vent the chamber (as in Step 1.3).			
	X 📀 🖺 ⊙ †↓+			
	Vacuum ?			
	Pump Vent			
11.	Unload your sample (reverse of Step 1.4).			
12.	2. Close the chamber door and pump down the chamber (See Step 1.6)			
	¹ [®] ◆ ■ ● [†] +			
	Vacuum ?			
	Pump Vent			
	High Vacuum			
10				
13.				
	Disable the NovaNano SEM in BADGER when finished.			

Overview: This section describes how to write a properly prepared pattern (i.e. *.dc2 files) using the NPGS e-beam writing system on the FEI Nova Nano 450 SEM. For information about pattern preparation, advanced writing features and pattern development, please refer to the NPGS documentation.

The NPGS tool gives the NovaNano SEM the ability to write patterns by systematically steering and blanking the electron beam, the latter of which is performed using the ScanService beam blanking module (always left in EXT mode).

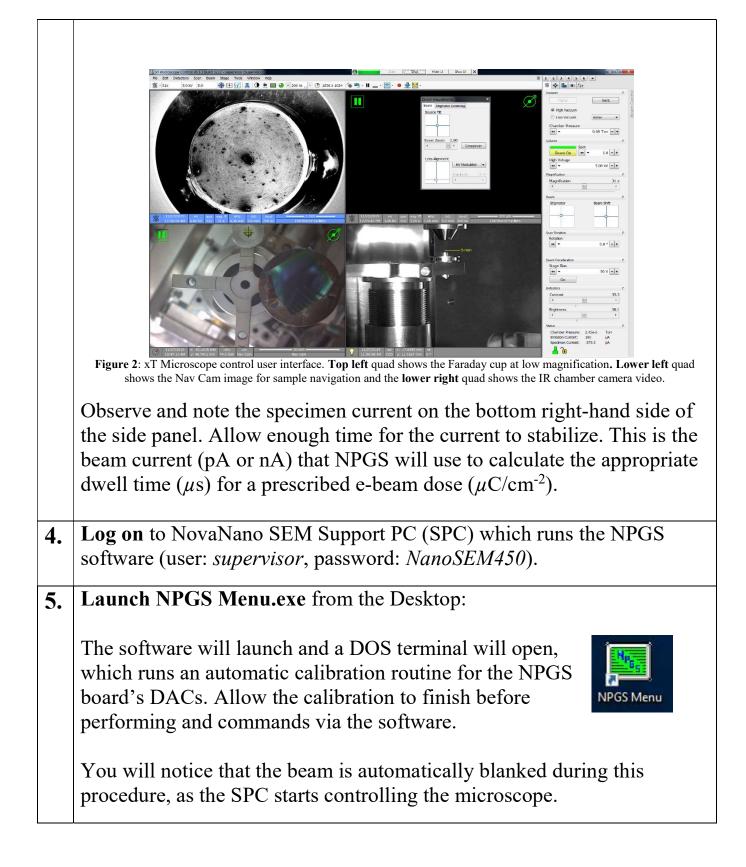

ustom Commands		Current Project Directory		[Display File Types
<process< th=""><th>Run File></th><th>C:\NPGS\Projects\yourname\</th><th></th><th><u> </u></th><th>Runfiles and DC2</th></process<>	Run File>	C:\NPGS\Projects\yourname\		<u> </u>	Runfiles and DC2
Bun Fil	e Editor	File Name	Туре	Size	Time and Date
		Start_HereRF6	RF6 file	12,225	10-02-2009 09:00:00
Show F	Run File	Template_1_Example.RF6	RF6 file	2,718	08-08-2012 09:00:00
		Template_2_Example.RF6	RF6 file	648	08-08-2012 09:00:00
DesignCAD	Express v21	Template_Finish1.RF6	RF6 file	260	08-08-2012 09:00:00
1		Template_Initialize1.RF6	RF6 file	1,388	08-08-2012 09:00:00
Estimate	Total Time	AI_Box.RF6	RF6 file	548	01-19-2001 08:00:00
01 1.1	1.155	Align.RF6	RF6 file	1,068	08-12-2003 09:00:00
Simulate	e Writing	Chk_Off1.RF6	RF6 file	985	01-19-2001 08:00:00
CELL MA	User Notes>	Device2withAlignment.RF6	RF6 file	1,450	06-16-2001 08:00:00
KUIICK Me -	User Notes>	DEVPAT1.RF6	RF6 file	301	08-12-2003 09:00:00
NPGS	Manual	DEVPAT2.RF6	RF6 file	217	06-16-2001 08:00:00
NEUS	Mariuai	Keyhole.RF6	RF6 file	412	01-19-2001 08:00:00
Run Files	DC2 Files	SAMPLEO.RF6	RF6 file	443	02-20-2008 09:00:00
Trainin lies	0.021100	SAMPLE1.RF6	RF6 file	392	07-26-2011 09:00:00
LastRun.log	Project.log	SAMPLE2.RF6	RF6 file	641	08-18-2000 08:00:00
		Sample3.RF6	RF6 file	1,396	08-24-2005 09:00:00
Set WD=7 mm	Get SEM Info	SAMPLE4.RF6	RF6 file	226	08-18-2000 08:00:00
		SAMPLE5.RF6	RF6 file	227	10-11-2000 08:00:00
DAC (0,0)	Do Backlash	SAMPLE5A.RF6	RF6 file	259	10-11-2000 08:00:00
		SCALE1.RF6	RF6 file RF6 file	141	08-18-2000 08:00:00
<sem mode=""></sem>	<npgs mode=""></npgs>	USA.RF6	RF6 file	136 156	08-18-2000 08:00:00 08-18-2000 08:00:00
		USA_AR.RF6	RF6 file	136	08-18-2000 08:00:00
Make Spot (1s)	Spot (30s)		DesignCAD file	2.125	01-19-2001 08:00:00
100		Align.DC2	DesignCAD file	4,468	08-12-2003 09:00:00
Сору То	Copy From	Chk_Off1.DC2	DesignCAD file	3,353	01-19-2001 08:00:00
View Text File	Blank Screen	DEVPAT1.DC2	DesignCAD file	4,094	08-12-2003 09:00:00
VIEW LEXCHIE	biank screen	DEVPAT2.DC2	DesignCAD file	4,034	08-18-2000 08:00:00
		Revhole.DC2	DesignCAD file	3,776	01-19-2001 08:00:00
		Polygon Hole1.DC2	DesignCAD file	9.006	08-24-2005 09:00:00
		SAMPLE0.DC2	DesignCAD file	27,348	02-20-2008 09:00:00
		SAMPLE1.DC2	DesignCAD file	43,024	07-26-2011 09:00:00
	Help · How To	SAMPLE2.DC2	DesignCAD file	72,366	08-18-2000 08:00:00
		Sample3.DC2	DesignCAD file	48,570	08-24-2005 09:00:00
Auto Loggin - M	ada	SAMPLE4.DC2	DesignCAD file	3,750	08-18-2000 08:00:00
Auto <u>L</u> ogging M	oue	SAMPLE5.DC2	DesignCAD file	12,786	10-11-2000 08:00:00
Exposure Scale	1.000	SCALE1.DC2	DesignCAD file	1,191	08-18-2000 08:00:00
Beam Current	10.00	USA.DC2	DesignCAD file	84,148	08-18-2000 08:00:00

Figure 1: NPGS Menu user interface.

🖆 Columbia | Nano Initiative

	COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK COLUMBIA NANO INITIATIVE / CENTER FOR INTEGRATED SCIENCE AND ENGINEERING
1.	Perform Section I of this document to properly access the Nova Nano SEM and load your sample for e-beam lithography.
	<u>Note 1</u> : For best reproducibility, the Faraday cup (see Step 1.4) should be placed in any one of the slots on the holder.
	<u>Note 2:</u> In order to obtain the correct focus in e-beam lithography. The microscope will need to be correctly in focus on the sample on which you intend to write. Therefore, it is necessary to have some feature, away from the writing area of interest, to serve as a focus reference. This could be a scratch (made with a razor or scribe), or a metal thin film feature (with high Z-contrast), a deep etched trench or metal nanoparticles dispersed on the resist surface.
2.	Perform Steps 2.1 through 2.5 of this document to properly optimize the microscope on an area on your sample (WD = 5mm). If your sample is flat, optimize the image on the focus reference feature (i.e. the scratch The recommended accelerating voltage and spot number for standard e- beam lithography are 30.00 kV and 5.0, respectively. Do not link the stage as directed for imaging in Step 2.7.
3.	Navigate to the Faraday cup location and adjust focus as necessary on the hole in the center of the stub.
	Zoom in to high enough magnification such that the field of view is entirely in the Faraday cup hole, or use Spot scanning mode.

IN THE CITY OF NEW YORK COLUMBIA NANO INITIATIVE / CENTER FOR INTEGRATED SCIENCE AND ENGINEERING

6. Create your user project folder: *skip if folder already created* You must create a project folder for your user account. The location of your project folder should be: C:\NPGS\Projects\yourname.

It is critical to copy ALL of the necessary system files from the directory: C:\NPGS\Projects\Samples to your project folder. These files contain important instructions for controlling the microscope via the support PC. The simplest way to perform this is by making a copy of the ...\Samples folder and renaming it to ...\yourname.

- Navigate in Windows explorer to C:\NPGS\Projects
- Make a copy of the **Samples** folder
- Rename it to *yourname*.

This action will also copy example CAD files (*.dc2) and run files (*.rf6), which can be used as references for your work.

Your project directory may also be created from within the NPGS Menu:

- Project > Create New Project
- Enter the name of your folder and click '<u>C</u>reate'

Location to Create new Project	
C:\NPGS\Projects\	<u>B</u> rowse
New Project Name	
yourname	Create

<u>Note</u>: Creating a new project folder alone automatically loads the system files needed for operation. However, several fields within the files themselves are left blank and the writing will simply not work. Ensure that you copy all of the original files from the\Samples folder by performing the following steps:

- Click <u>File</u> \blacktriangleright Copy File(s) to Current Project
- Select C:\NPGS\Projects\Samples and click OK
- In the top right corner, select 'All Files' from the drop-down menu 'Current File Types Listed'
- Click '<u>Select All</u>' on the lower left corner to highlight all files.
 COLUMBIA NANO INITIATIVE

IN THE CITY OF NEW YORK COLUMBIA NANO INITIATIVE / CENTER FOR INTEGRATED SCIENCE AND ENGINEERING

Click 'Copy Files'. Unfortunately, you will be prompted to overwrite all conflicting files, so it's better to do this through Windows Explorer. Select your project folder from the drop-down menu at the top of the 7. NPGS window: Current Project Directory Display File Types C:\NPGS\Projects\vourname\ Run Files PGS\Projects\Samples\ Size Time and Date **RF6** file 12,225 10-02-2009 09:00:00 Template_1_Example.RF6 RF6 file 2,718 08-08-2012 09:00:00 09.09.2012 09:00 0 **Position your sample** for writing using the stage Navigation features on 8. the microscope PC (i.e. Nav-Cam navigation). Sometimes, the communication between the SPC and microscope (FEI's DCOM client) makes it impossible to switch between guads in the user interface. In this case, click "NPGS Mode" and then back to "SEM Mode" in the NPGS Menu to force normal SEM operation. Ensure that, when at the writing position, the surface of the e-beam resist will be in focus at a recommended working distance of 5 mm. It is important not to expose the area of interest by focusing at too high a magnification or by dwelling on the area for an excessive period of time. Once positioned as desired, zoom out to minimum magnification and 'pause' the scanning in the upper left quad. Notice that the specimen current goes to zero. Place the SEM in External Control Mode by clicking the NPGS 9. Mode button on the left-hand side of the NPGS Menu window. Ensure that the quads on the microscope PC all say 'External' indicating external control by the NPGS software.

	COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK COLUMBIA NANO INITIATIVE / CENTER FOR INTEGRATED SCIENCE AND ENGINEERING	
10.	Locate your desired run file (*.rf6) in your project folder through the NPGS Menu browser.	
	Right-click and modify the file as needed. <u>Be sure to update the beam</u> <u>current in any Pattern steps to the value measured in Step 3.3</u> . Click Save and exit the run file editor.	
	Optional: on the left side of the NPGS Menu, click 'Simulate Writing' to check for potential errors with your run file. Y	
11.	Perform your exposure by clicking <process file="" run=""></process> on the left- hand menu or by right clicking on your run file and selecting Process Run File .	
12.	Place the microscope in SEM mode by simply closing the NPGS Menu software when finished.	
	Alternatively, SEM Mode can be activated with NPGS left open by clicking SEM Mode on the left-hand menu. However, always close NPGS software when finished with writing.	
13.	Unload your sample using Steps 2.9-2.11. Pump the chamber and log out using Steps 2.12 and 2.13.	